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Recently, a new method for quantitatively comparing NMR
spectra of control and treated samples, in order to examine the
possible occurring variations in cell metabolism and/or structure in
response to numerous physical, chemical, and biological agents,
was proposed. This method is based upon the utilization of the
maximum superposition normalization algorithm (MaSNAI) op-
erative in the frequency domain and based upon maximizing, by
an opportune sign variable measure, the spectral region in which
control and treated spectra are superimposed. Although the fre-
quency-domain MaSNAI algorithm was very precise in normaliz-
ing spectra, it showed some limitations in relation to the signal-
to-noise ratio and to the degree of diversity of the two spectra being
analyzed. In particular, it can rarely be applied to spectra with a
small number of visible signals not buried in the noise such as
generally in vivo spectra. In this paper, a time-domain normaliza-
tion algorithm is presented. Specifically, it consists in minimizing
the rank of a Hankel matrix constructed with the difference of the
two free induction decay signals. The algorithm, denoted
MiRaNAI (minimum rank normalization algorithm), was tested
by Monte Carlo simulations as well as experimentally by compar-
ing two samples of known contents both with the new algorithms
and with an older method using a standard. Finally, the algorithm
was applied to real spectra of cell samples showing how it can be
used to obtain qualitative and quantitative biological
information.  © 2000 Academic Press
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INTRODUCTION

NMR spectroscopy is increasingly used, bottvitro andin

Vivo, to examine variations induced by physical, chemical,

intensities of control and treated and/or exposed cell sample
can be compared to examine variations in cell metabolisr
and/or structure.

The problem of precisely comparing signal intensities of

treated and control samples is actually a very important tasl
For this purpose, various methods have been developed. F
example, inin vitro studies, synthetic, such as 3-trimethylsil-
yl[2,2,3,3d,]propionate {, 2), or naturally occurring, such as
glucose in**C spectra ), reference compounds have been
used. In addition, in botm vivoandin vitro studies, enzymatic
determination of the concentration of a metabolite present i
the samples as well as the assumption that the concentration
a particular metabolite (e.g., the alanine methyl doublet or th
creatine singlet) does not change has also been util&€eg).
In particular, a common method of normalization of spectra i
to divide each spectral intensity by either the sum of intensitie
or the square root of the sum squares of intensities of meta
olites whose concentrations are supposed not to change. /
these methods are not related directly to the overall intrinsi
properties of the samples, but rather to the addition of extern:
substances of known concentration, to the indirect measur
ment of internal substances, or to an assumption about tt
concentrations of particular substances.

Recently, a new method for quantitatively comparing the
spectra of control and treated samples was prop&®ett (vas
first used in order to study adhesion between cells and biom:
terials, in particular in order to study the interactions betweel
K562 leukemic cells and polylysing,

Since concentration differences result in proportional varia
ions of spectral intensities, nonproportional changes can mo
kely be attributed to the effects of a particular agent. The

biological agents which have acted on a sample or on a patient. . S : 2
éoportlonal variations are described by a normalization factc

In these types of studies, in order to obtain relative quantitatir% hich b lculated i der 1 trol
information, a comparison between signal intensities of control which must be calcuiated in orger to compare controf an
tls?_ated signal intensities. For this purpose, the frequenc

and treated or exposed samples is often conducted. For ) X . L )
omain maximum superposition normalization algorithm

stance, inin vivo studies, signal intensities of a patient spec:

trum before and after a therapeutic treatment can be compaggl&‘SNAl) (6) was proposed. It operates in the frequency

to study the effect of the treatment; im vitro studies, signal domain _and takes into consu.jera_tlon aII_ the. cell metabolite
present in the sample. It consists in maximizing, by an oppol

1 To whom correspondence should be addressed. Fa39) 081676346, tunesign variable measur¢8, 9), the spectral region in which
E-mail: rocco.romano@na.infn.it. spectral lines are proportional.
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It was shown that the MaSNAI algorithm can be applied to TheL X M Hankel matrix
spectra with a high signal-to-noise ratio (SNR70) and when

there are few changes induced by the agent, i.e., when the Xo X1 Xp1—1
spectral lines with changes are few with respect to the total X, Xo -t Xy
number of spectral lines. In particular, the percent ratio of X=| . . b (2]
nonsuperimposed points and the total number of spectral X1 XU -+ Xn1

points, denoted thdegree of diversitpf two spectra, demon-
strated that the MaSNAI algorithm was able to calculate thenich consists ofN uniformly sampled data points,, n = 0
normalization factor with a bias of less than 1% only forg N — 1 with L and M chosen greater thas and

degree of diversity of less than 50%. _ subjected to the constraift = L + M — 1, is considered. If
In this paper, a time-domain algorithm, denoted as MiRaNA{se is present and if the SNR is not too low, the rank of the

(minimum rank normalization algorithm), which is able tQysnkel matrix in Eq. [2] can be approximated 8ythat is, by

calculate the normalization fact&is presented. It is based onhe number of harmonic components of the FID, and it can b

the minimization of the rank, obtained by singular value dgptzined by SVD 10—13, 1J. The singular value decomposi-
composition (SVD) {0-13, of an opportune Hankel matrix is theorem states that X is an arbitraryL X M complex

(14). The algorithm was tested by Monte Carlo simulationg,ed matrix, then there exist unitary matridg¢L x L),

which d(_amonstrate it; ability to_ determine t_he normal!zatiop(M X M) and p ordered real numbersp(= min(L, M))

factor with very low bias, both in spectra with a low signal;, = , = = = o, > 0, such that

to-noise ratio and in cases in which great changes are induced

by the treatment (degree of diversity 50%). In particular,

simulations were conducted for both MaSNAI and MiRaNAl

algorithms to compare their ranges of applicability. In order to

test the validity of this algorithm experimentally, two sampleghereX(L X M) is such thak = diag(os, o, ..., 0},) and

of known contents were compared. A traditional method bastt¢ ' denotes Hermitian conjugation. Thenumbers are the

on the use of a standard and the new MiRaNAI algorithm weg@-called singular values of thé matrix.

used. If the X matrix has rank equal td, only its first A singular
Finally, the MiRaNAI algorithm was applied to real spectryalues are greater than zero; that is, fok aank X matrix one

of cell samples, demonstrating how it can be used to obtdiAs

qualitative and quantitative biological information.

X = U3V

o=0,=...=20,>0
RESULTS AND DISCUSSION
OrA1=0Op42=...=0,=0. [3]
The Algorithm
An X Hankel data matrix of a noiseless FID comprisifig

A time-domain NMR free induction decay (FID) experiment,qhjex decaying sinusoids has rank equahidecause its
can be modeled as a sum of complex exponentially decayifiments are points of the FID and then they are obtained by

sinusoids, linear combination of\ independent signal components. Each
X Hankel matrix row (column) is a linear combination of the
s=S sameA independent signal components and thenXtd¢ankel
Xo = > Aexfi(po + dolexd (—as + i2mvdt,] + e, matrix can have only independent rows (columns). The rank
s=1 of the X Hankel matrix isA. As a consequence, theHankel

[1]  matrix has onlyA singular values different from zero. In Fig.
1a, the singular values of the Hankel matrix of a simulated

where S is the number of sinusoids, aml, «,, v, and ¢, noiseless FID, containing 10 exponentially decaying sinusoid:
(s =1, 2,...,9 are the amplitude, damping factor, fre-are plotted. As can be seen, only the first 10 singular values a
quency (in Hz), and phase, respectively, of stle sinusoid. different from zero, while the others are all zero.
The value ofp, is the zero-order phase agglis complex white  If the FID is affected by noise, it& Hankel matrix becomes
Gaussian noise. The number of complex data poinit§ is = a full rank matrix because the noise destroys the linear depe
0,1,...,N — 1, and the discretely sampled time steps adence of the rows (columns): noise can be considered tt
t, = (n + m)At,with t, = nAt the begin time, or dead time combination of infinite independent signals. However, if the
of the spectrometerlf, 16. The value ofp,, required only SNR is not too low, that is, if the signal amplitudes can be
under particular experimental conditions, can usually be sminsidered greater than the noise amplitude, the signal-relat
equal to zero16) and, in what follows, it will be supposed thatsingular values are very much greater than the noise-relate
this is the situation for the present experimental conditions.singular values and the rank of tdeHankel matrix still can be
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A 6 107 and
510° | p
e 4 f Xn2 = XPli poo)[ 2 PoeX(—ag + i2mwdt]
; s=1
5 3 102 s
=
Eﬂ 210 [ + E AsZeXd(_Bsz + iZWVsz)tnz]] + €n2, [5]
@»n s=P+1
110 [
wheren = 0,1, ... ,N — 1, ¢, is the zero-order phase,,
0 : ¢ o ¢ is the complex Gaussian noise and = (n + m,)At, with
0 10 20 30 a0 3ty = m,At the begin time of FID 1P, ag, andv, (s = 1,
Index Singular Values 2,...,P) are, respectively, the amplitude, damping factor,
B 610 and frequency (in Hz) of theth proportional sinusoid of FID
1; andAy, By, andvy (s=P + 1,P + 2,...,S1) are,
5100 [ respectively, the amplitude, damping factor, and frequency (i
Hz) of thesth nonproportional sinusoid of FID 1. The symbols
E 410" [ L (n + ﬂz)At to. = nzAt Po, ag, v, Ay, B,
B and v, have the same meaning for FID 2. In this hypothesis
5 30 E Py = R* Py, anday = a,fors=1, 2, ...,P, while, in
§n , general and due to the effects of the treatment,sfor P,
@ 20 Ay # R * Ay, and By, Be, va, andvy could be different.
e If one assumes that, = n, = 0 (18), from Eqs. [4] and [5]
it follows that the zero-order phases, and ¢, of the two
0 . gece0cesscsssescece ssee FIDs can be approximated by the phases of their first pgint
0 10 20 30 40 50 and xq,, respectively; in particularg,, = arctanf,,) and
Index Singular Values b, = arctanfk,,). To correct the FIDs in their zero-order
FIG. 1. Plot of the singular values of a simulated FID containing 1(Phase itis then sufficient to multiply each point of the FIDs by

o1 tane b0z tangoz)

exponentially decaying sinusoids: (a) noiseless FID; (b) SNROS. exp '™ = exp ¥ and exp ' = exp ' ", respee
tively; the FIDs, corrected in their zero-order phase, can the

approximated by\. In particular, in the ordered singular value®e described as

there will be a discontinuity between signal-related and noise-

related singular values. In Fig. 1b the singular values ofXhe Ko = exd —i arctariXy) ] * Xnp [6]
Hankel matrix of the above-simulated FID containing 10 ex- ~ )

ponentially decaying sinusoids, with the addition of Gaussian Knp = expl —i arctan Xz | * Xz, [7]
noise (SNR= 108), are plotted. As can be seen, all singular

values are not exactly zero, but at the 10th singular value theveeren = 0, 1, ... ,N — 1.

is a discontinuity. The rank of the Hankel matrix can be Denoted by
approximated by 10.
At this point, two FIDsX,(t) andX,(t) will be considered 5% = % — K * X 8]
. . n nl n2s
relative, respectively, to a control sample and to a treated one.
It will be supposed that the treatment does not affect some ) o
unknown signals, which are proportional due to changes onKpiere K is a test value of the normalization fact&; the
in concentration. These proportional variations are describB@nkel matrix
by the normalization factdr, and the two FIDs can be written

85\(0 85\(1 et Sf(M,l
s=P AX K) = 65\(1 55\(2 o 8$(M 9
Xo1 = explido)[ S Poexil(—aq + i2wu)t,] ®=r - - [°]
s=1 85\(L71 Ss\(L ot Sf(N,l
s=S1

+ 3 Agexf(—Bo + i2mv)ty]] + €4 [4] Wwith L andM chosen greater tha + S, and subjected to the
s=P+1 constraintN = L + M — 1, will be considered. FOK # R,
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TABLE 1
FID 1 and FID 2 Parameters

Amplitude 1 Amplitude 2 Damping 1 Damping 2 Frequency 1 Frequency 2
17. 34. 369. 369. —3500. —3500.
10. 20. 327. 327. —3450. —3450.
36. 72. 913. 913. —3150. —3150.
15. 30. 651. 651. —3000. —3000.
20. 40. 236. 236. —2900. —2900.
12. 24, 950. 950. —2750. —2750.
25. 50. 139. 139. —2000. —2000.
33. 66. 210. 210. —1500. —1500.
35. 70. 178. 178. 1600. 1600.
15. 30. 555. 555. 1800. 1800.
23. 46. 710. 710. 2100. 2100.
22. 44, 345. 345. 2700. 2700.
35. 70. 455. 455. 2850. 2850.
27. 54, 825. 825. 3020. 3020.
40. 50. 177. 177. —3335. —3335.
20. 10. 123. 123. —3100. —3100.
15. 40. 275. 275. 2400. 2400.
39. 58. 700. 700. 3000. 3000.
35. 15. 765. 865. 3100. 2900.
14. 50. 455. 555. 3500. 3400.

these matrices will have a rank approximated at the most ®aussian noise. Each point of these Monte Carlo simulatior
S, + S, — P, because im\X(K) there will be a number of consisted in 30 independent Gaussian noise realizations
independent complex decaying sinusoids equal at the mosttuples of FIDs. The program was written in Matlab and in
the sum of the number of; and X, complex decaying sinru order to generate random numbers, taedn Matlab function
soids minusP, being the proportionaP decaying sinusoids was used. Each FID consisted of 20 complex decaying sint
counted twice irnS; + S,. However, forK = Randn, =~ n,, soids with a number of sinusoid amplitudes in a ratio of 1:2
the rank ofAX(R) will be approximated at the most I8 + The range of amplitudes, in arbitrary units, went from 0 to 10(
S, — 2 * P, because thé proportional complex decaying (the range presented is relative to the FIDs with smaller an
sinusoids inX; and X, cancel each other out. plitudes, so that the same range has to be duplicated for tl

In order to obtain the normalization factBy the algorithm, amplitudes of FIDs with greater amplitudes). The linewidth
which operates in the time domain, consists in calculating th@nge was 30—-300 Hz. The number of nonproportional cornr
minimum rank of the Hankel matrix in Eq. [9]. If the signal-plex decaying sinusoids, that is, of those sinusoids havin
to-noise ratio is not too low, this calculation can be acconamplitude ratios different from 1:2, was varied from 4 to 18,
plished by the singular value decomposition looking at aalways with 20 as the total number of sinusoids per FID.
eventually occurring discontinuity in the ordered singular val- SinceR = 2, the minimization in the MiRaNAI algorithm
ues of the Hankel matrix in Eq. [9]. In fact, due to noise, theas carried out in the simplest way, that is, by makigary
singular values of the matrix in Eq. [9] will be all differentfrom 1.6 to 2.4 with a step of 0.01 and calculating the mini-
from zero, but singular values related to noise will be vemnum rank of the Hankel matrix in Eq. [9]. The estimateRof
much smaller than those related to signals. In this mannervitas theK value for which the minimum rank was attained.
the ordered singular values there will be a discontinuity be- Four different sets of Monte Carlo simulations were carriec
tween signal- and noise-related singular values. The rank of tha.

matrix in Eq. [9] will be approximated by the number of pjscontinuity in the ordered singular valuesThe first sim-
singular values related to signals and whén= R, this ation was designed to show how, when noise is not zerc
number will be minimum. there is a discontinuity in the ordered singular values of th
Hankel matrix in Eq. [9] and how the minimum rank, and then
the normalization factoR, is obtained by looking at this
In order to test the MiRaNAI algorithm, both simulated FIDsliscontinuity. Two FIDs, with the parameter values in Table 1
and experimentafH NMR FIDs of known contents were andN = 256,At = 0.000125sg, = 0.00030,5, = 0.00035,
utilized. The simulated FIDs were generated by complex sé, = 0.54 rad, ¢, = 0.35 rad, and SNR= 191, were
perposition of exponential decaying sinusoids with additiveonsidered. As can be seen in this table, the two FIDs have

Simulations Testing the Algorithm
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a 1210 related singular values, an automatic procedure was used.
D particular, ifo, ya:1, Tp pasas - - - » 0, Was the last quarter of
110° | e K290 singular values, certainly all noise related, denoted by
—m— K=2.20
%3 2
I 7= max{(op; — oy},
5 610 i=pld4—-1,pl4d—-2,...,1,
gn 410° -
@ the index required was the lgstwithj = 1, 2, ... ,p — 1,
210 | for which the condition ¢; — oy.,) = 1.5 * 7 was satisfied.
The second set of Monte Carlo simulations was designed |
0 study the dependence of the algorithm on the degree of dive
0 sity. If two FIDs have all the complex decaying sinusoids tha
are proportional by a constant fact8r then the two spectra,
b 210 obtained by Fourier transforming the FIDs, can be superim
, K=1.80 posed simply by multiplying one of them §. Normalizing
18107 F K=2.00 the two spectra, in this case, is very easy: it is sufficient, in fac
L610" [ &igiég to look at the constant factor which makes them superimpose
ERTITa When the two FIDs have only some complex decaying sinu
S ) soids which are proportional by a const&tthe two spectra
E L2 result superimposed only in some regions, but not totally, whe
En 110° [ correctly normalized. The degree of diversity of two spectra i
@ 80 L defined as the percent ratio between the number of points th
o b are not superimposed and the total number of spectral poin
when the two spectra are correctly normalized. On the othe
0r MG aad hand, when the degree of diversity is small (less than 50%
0 5 10 15 20 hormalizing a couple of spectra in the frequency domain i

Index Singular Values easy because, in that case, they result superimposed in t
majority of spectral pointsg). However, the degree of diver-

FIG. 2. Ordered singular values of a Hankel matrix obtained by two FIDsit d nd n the number of molex d in in i
for different K values versus their index: (a) the first 25 ordered singula§ y depends o € number of comple ecaying sinusoic

values; (b) the zoom in the first 20 ordered singular values in the range 5-¥dich are OOt prloporti.onal and on the characteristics of com
plex decaying sinusoids. Therefore, two spectra can have

, , . o , great number of proportional complex decaying sinusoids an
pomplex proportional decaying ,S'”‘,JSO'O'S in a ratio of 1:,2' thﬁE the same time a great degree of diversity. However, in thi
is, the two FIDs have a normalization factorRf= 2, while  .,qe in the frequency domain, it is not possible to determin
the other fqur have nonpropomona}l amplitudes, aqd the Ialﬁb normalization constant. On the other hand, the MiRaNA
two have dlfferent dampings a_nd d|ffer_ent frequencies. Wh%’ﬂgorithm, which operates in the time domain, should no
correctly normalized, there will be 6 independent compleehend on the degree of diversity since it is not based on tt
decaying sinusoids and so the rank of the Hankel matrix in Eéhperposition of spectral points.

[9] for K = R = 2 has to be app.rOX|mated by 6. In Fig. 28 The results of the MaSNAI algorithm in the frequency
are reported the first 25 ordered singular values of the Hankg)y,ain and those of the MiRaNA| algorithm were compared
matrix in Eq. [9] obtalned. with. = 80 andK :_1'8’ 1.9, 20 Before applying the MaSNAI algorithm the FIDs were zero-
2.1,2.2. As can b?ee”v in the range qf the first 5—1.0 singulagied to 32,768 points and then Fourier transformed. The
values there is a discontinuity for all fiv€ values. Figure 2b oo rameters used to quantitatively compare the behavior of tt
is @ zoom of Fig. 2a in order to better show the region ¢f, ahove-mentioned algorithms were the absolute perce

interest. As this figure shows, fot = R = 2.0 there is a piaq (hias) and the variance (var) defined by the following
discontinuity around the 6th singular value, while kor# 2.0, equations, respectivelyLg)

the discontinuity appears after the 10th singular value. From
the figure, it can be assumed that the minimum approximated .
rank %f the Hankel matrix for the two FIDs conpsFi)dered is biagK) = |E[K] — RI/R * 100
approximately 6 and occurs fast = R = 2.0. var(K) = E[(K — E[K])?],

Dependence on the degree of diversityn these and in the
following Monte Carlo simulations, in order to obtain the indexvhereE[ | denotes the mean operation.
of the singular value which separates signal-related from noisedn Fig. 3a, the absolute percent bias is reported as a functic
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a 8 e gree of diversity greater than 50%. The MiRaNAI algorithm is
2] & MasNAl . also applicable in situations in which it is not possible to obtair
the normalization constant in the frequency domain.
6 In Figs. 4a and 4b the variance is reported as a function c
~ 5L the degree of diversity. In particular, in these figures, it can b
£ . observed that the variance is quite independent of the degree
8 ] diversity of the spectra and that there are no significant differ
= 3k A o ences in the dispersion of the MaSNAI and MiRaNAI algo-
5 E * rithms’ estimated values around the true parameter value.
b . Dependence on the signal-to-noise ratidlhe third set of
s r ., P . . Monte Carlo simulations was designed to examine the depe
“40 4'5 5'0 5'5 elo 6'5' o dence of the algorithm on the spectral noise. The signal-tc
Degree of Diversity (%) noise ratio was defined by
SNR = (110 + 4)
P(ve) — ¢
b $ e  MiRaNAl SNR= (P(v) — )2V [10]
7 A MaSNAI A 2 X iagali
N
St .
- st wherey = [, y(v)]/(N + 1), Y(v,) is the maximum peak
= &
a 3t a  0.0035
Lk e MiRaNAl ° o
a A 0.003 A MaSNAI .
1E * . b
i > * 00025 L ®
0 L L L D, e
40 45 50 55 60 65 5 0.002 P
Degree of Diversity (%) ,E *
SNR=(53+t4) 5 0.0015 | aa
FIG. 3. Percent absolute bias versus degree of diver@yMiRaNAl 0.001 [ a
algorithm; A, MaSNAI algorithm: (a) mean SNR 110 * 4; (b) mean SNR
=53 4, 0.0005 [ .
0 4 1 1 1 | IA A
of the degree of diversity for simulated spectra having a signal- 40 45 50 55 60 65 70
to-noise ratio of 110+ 4. As this figure shows, the time- Degree of Diversity (%)
domain MiRaNAI algorithm is, as expected, quite independent SNR=(110£4)
of the degree of diversity. Therefore, it is better than thg,  o0m .
frequency-domain MaSNAI algorithm which cannot be applied : M;F‘gm' .
for a degree of diversity greater than 50%. Furthermore, the s o« °
absolute percent bias is reported as a function of the degree of . .
diversity for simulated spectra having a signal-to-noise ratio of
53 = 4 (Fig. 3b). This figure confirms that the time-domain g 0006 .
MiRaNAI algorithm is quite independent of the degree of'§
diversity for noisier spectra as well and again that it is bette/> 0004
than the frequency-domain MaSNAI algorithm which does not . L
work well for degree of diversity> 50%. In particular, the 0.002
MiRaNAlI algorithm also has a percent bias of less than 1% for A A A
degree of diversity> 50%, when the MaSNAI algorithm gives 0 ! ! ! a2t
very biased results. 40 45 50 55 60 65
In conclusion, Figs. 3a and 3b show that the MiRaNAI Degree of Diversity (%)
algorithm is quite independent of the degree of diversity of the SNR=(3£4)

spectra and there.fore can also be app!ied ir.‘ Situ?-tions_ in WhiCRiG. 4. variance versus degree of diversi®; MiRaNAI algorithm: A,
there are proportional complex decaying sinusoids with a d@aSNAI algorithm: (a) mean SNR: 110 + 4; (b) mean SNR= 53 + 4.
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a 25 "
r e MiRaNAl
x A MaSNAI
2+ & &
_ L &
§ 1.5 :
- 'y
3 I e
2] 1k
° ®
0os[ e L 2
e ¢ & * 0t
. ® s A A
0 1 E . 8 & ? . ®
0 50 100 150 200 250 300
SNR
(Degree of Diversity = (41 + 3)%)
b 6
e MiRaNAI
i A MaSNAI
S5 aa
a a
i
- 4r ad 5
< Yy
v 3L i & & a
2 . :
2 -
1| s .
[
" .
S [ ®
0 ;% ® | L 1 1 1 b
0 50 100 150 200 250 300 350
SNR

(Degree of Diversity = (59 £ 3)%)

FIG. 5. Percent absolute bias versus SNR: MiRaNAI algorithm; A,

MaSNAI algorithm: (a) mean degree of diversity41l = 3%,; (b) mean degree

of diversity = 59 = 3%.

height,al anda2 are the limits of the noise reg

ion with +

point of this simulation regards simulations with different true
R normalization factor values (Fig. 6). In this figure, the
estimated value of the normalization factor is reported as a trt
R value function. As can be seen, there is an optimal correle
tion between estimated and true values.

From the results presented above, the Monte Carlo simul:
tions demonstrate that, for signal-to-noise ratios greater the
40, the MiRaNAI algorithm is able to determine the normal-
ization factorR of two NMR spectra with a bias of 1% at most.

Quantitative Relationship between Two Spectra Obtained
by the MiRaNAI and MaSNAI Algorithms and
a More Traditional Added Standard Method

In order to test the validity of the MiRaNAI algorithm
experimentally, two samples of known contents were com
pared. Both samples contained thyrotropin releasing factc
(THR, Calbiochem, MW 362.4), deuterated methanol {OD
99.96%, Cambridge Isotope Laboratories), and sodium tri
methylsilyl[2,2,3,3d ] propionate (TSP, 1@mol/ml). The first
sample (sample A) consisted of 4.5 mg of THR, 4000f
CD;OD, and 10ul of TSP, while the second sample (sample
B) consisted of 4.5 mg of THR, 600l of CD,0D, and 10ul
of TSP.

Five '"H NMR spectra were obtained, for each sample, usin
a Bruker DPX digital spectrometer operating at 300 MHz. The
spectra were accumulated with a 90° flip angle pulse and €
transients of 8K data points corresponding to a spectral wir
dow of £2097.3 Hz.

Using the traditional method, that is, making a quantitative

1= al — a2, andy is the DC level of the noise region. In Fig.
5a, the absolute percent bias is reported as a function of the
SNR for simulated spectra having a degree of diversity of41
3%. This figure shows that the MiRaNAI algorithm is quite
robust since it has a bias of less than 1% for spectra with a low
signal-to-noise ratio (SNR< 18) as well. Furthermore, the
MiRaNAIl algorithm proved to be more robust than the
MaSNAI algorithm which for SNR< 50 is more biased. In
Fig. 5b, the absolute percent bias is reported as a function of
the SNR for simulated spectra having a degree of diversity of
59 + 3%. This figure confirms that the MiRaNAI algorithm is
very robust (bias less than 1%) and, above all, that it is also
applicable in situations in which the MaSNAI frequency-do-
main algorithm does not work well (degree of diversity
50%).

Dependence of R valuesThe last set of Monte Carlo

Estimated R Values

True R Values

FIG. 6. EstimatedR values versus truR values. Couples of FIDs with

simulations was designed to test the MiRaNAI algorithm fognr = 203 + 14. Curve fity = ax + b with a = 1.006,b = —0.002.

different values of the normalization factor. In particular, eaaborrelation ratior = 1.0.
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analysis using the

obtained 6):

Sample THR CDROD residual peak
A 38.7 = 3.6 umol/ml 41.9 = 3.9 umol/ml
B 20.2 = 2.5 uwmol/ml 36.1 = 4.6 umol/ml

(11]

If the percent differenceXcp,0n(%)) of CD;OD relative to
THR of the sample A spectrum with respect to the sample

ROMANO, SANTINI,

AND INDOVINA

TSP standard, the following results wespectra of control A431 cells (an epidermoid carcinoma) and c

these cells exposed to a sublethal dose of 3 Gy of ionizin
radiation (Gammacell 220, Atomic Energy of Canada Ltd.)
were compared.

The two FIDs, acquired under the same experimental cor
ditions using a Bruker DRX-5.00 spectrometer operating a
500 MHz, were analyzed by the MiRaNAI algorithm and a
normalization factor oR = 1.33 wasfound. After normal-
ization, the two normalized FIDs were Fourier transformed: ir
Fig. 7 are reported the resulting two spectra. As can be see
tBe spectra, after the normalization, overlap in a significar

spectrum is to be computed, the following equation can bgimber of spectral lines.

used,

CD,0D(B)
CD;OD(A) — W(B) THR(A)
Acpson(%) = CD,0D(B) X 100,
[12]

where CDOD(A) is the CD,OD concentration in spectrum A
and the other symbols have similar meanings.

The CD,OD concentrations are proportional to those ob

tained by considering the GDD residual peaks due to resid

ual protons 20); thus, the concentrations obtained by th
CD;OD residual peaks in Eq. [11] can be used directly in E%.

[12]. With this equation, using the concentrations obtained
the TSP standard quantification (traditional method),

Acp,o0(%) = (—39.4 £ 8.7)% percent difference was ob'[aineqa
(6), while, from the known quantities of the added substanc

and using the same above-cited equationA@,op(%) =
(—33.4 = 0.2)% difference was expected.

The same two spectra (A, B) were utilized to obtain th

percent difference\.p,05(%) of CD;OD relative to THR by

using the MaSNAI and MiRaNAl algorithms. The spectra were

e

In Fig. 8, the difference spectrum obtained from subtractiol
of the spectrum of controls from that of irradiated cells, aftel
normalization, is reported. As can be seen, the majority of th
signals fall around the baseline which appears very flat. |
addition, an immediate identification of the spectral compo
nents which vary between the two spectra and which ar
probably the result of the 3 Gy irradiation can be obtained. It
particular, important changes are induced in glycerophosphat
dylcholine (GPC, 3.24 ppm), phosphatidylcholine (PC, 3.22)
choline (Cho, 3.21 ppm), creatine (Cr, 3.03 ppm), and lactat
(Lac, 1.33 ppm) and in the lipid region (1.6—-0.6 ppm).

The difference spectrum in Fig. 8 shows that there ar
alterations in creatine (irradiated cells contain a greater amou
of Cr) and in lactate (irradiated cells contain a much smalle
mount of Lac with respect to control cells) which indicate a
rturbation of the energy metabolism of the cells. Further
r%ore, alterations in phosphatidylcholine (irradiated cells con
in a much smaller amount of PC) and in lipid (irradiated cell
&3ntain a greater amount of Gland CH, lipids than control
cells) reveal changes in cell membrane structure.

Thus, from these data, it appears that the MiRaNAI algo
fithm presented can be adequately utilized to compare NM
spectra of tumor cells.

normalized with the algorithms. At this point, the percent

differenceA cp,o0(%) of CD;OD relative to THR between the

spectrum of sample A, normalized with respect to the spectrum
of sample B, was obtained directly by comparing the areas(g)ff
the two spectral CEDD residual peaks. The value found with

the MaSNAI algorithm wag\ cp,00(%) = (—34.2* 1.3)% ©),
while that found with the MiRaNAI algorithm was
ACD3OD(%) = (_325 t 16)%

As can be seen, all three methods yielded percent differerr
results which were consistent with the expected ones. Ho

ever, the MiRaNAI and MaSNAI algorithms allowed goo
results to be obtained without the use of any standard

without quantifying all the spectral lines, but rather by co 3

paring the signals of interest in the normalized spectra.

Biological Application

CONCLUSIONS

In this paper, a time-domain algorithm for the normalization
couples of NMR spectra, in order to compare these spect
and to obtain relative quantitative information without the neec
of any standards, is presented. It consists in minimizing th
rank of the FID difference Hankel matrix and obtaining the
normalization constant which is able to reduce the number ¢
fear independent complex decaying sinusoids in the differ
nce of the two FIDs.

ecently an algorithm for NMR spectra normalization was

sented®); it was the MaSNAI algorithm operative in the
equency domain. Both the MaSNAI and MiRaNAI algo-
rithms allow normalization by exploiting intrinsic sample prop-
erties and thus considerably simplify the measurement proc
dures. In fact, no addition of substances or particula

The MiRaNAl algorithm was applied to the normalization omanipulations of the samples are needed, thus reducing co

NMR spectra of cell samples. In particular, thel NMR

tamination risks. In addition, the algorithms are very easy t«
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FIG. 7. Superimposed normalized spectra of A431 control cells and of A431 cells irradiated with 3 Gy.

manage and the normalization procedures require only a fethm was not applicable. In particular, the MiRaNAI algorithm
minutes. However, MiRaNAI shows some advantages witould be applied tén vivo spectra which are not so crowded
respect to the MaSNAI algorithm. and for which the MaSNAI algorithm is not suitable.

First, MiRaNAl operates in the time domain and so does not |n fact, it is an important task in magnetic resonance spec
require FID manipulations (e.g., phase adjustment, baselidgscopy to monitor metabolic and biochemical changes il
Correction) redUCing, in this manner, the effect of these manl.llﬁ_]merous disease processes. Howevein irivo proton spec-
manipulations on the calculation of the normalization factor. Woscopy at 1.5 T, the number of proton metabolites that can k
fact, simulations show that the MiRaNAI algorithm is lesgpserved is very limited and the spectra are not so crowde

biased than MaSNAIl algorithm. _ (21). As Monte Carlo simulations demonstrated, the MiRaNA|
Furthermore, the MaSNAI algorithm was applicable onl)§|

h H b 4 had b orithm is able to correctly normalize spectra with very few
when the spectra to be compared had a great number Pgnals and, above all, spectra with a few proportional signal

proportional signals with respect to the total number of signaf'%,at is, with a degree of diversity greater than 50%. Further
that is, when the degree of diversity of the two spectra was less =~

. A o : ore,in vivo spectra have worse signal-to-noise ratios timan
than 50%. This condition is often verified with spectra crowderg P lgnar-
o - . vitro spectra and Monte Carlo simulations showed that thi
with signals and when variations, due to the action of an agept, . : . )
iRaNAIl algorithm is less sensitive to SNR ratio than the

are not so great. In particular, these conditions are often vew SNAI alaorith
fied with "H high-resolution NMR spectra of cell samples, bulf/Ia a go_rlt m. _ _
in in vivo spectra this is seldom the situatidti), Furthermore, !N conclusion, Monte Carlo simulations showed that the

in crowded'H high-resolution NMR spectra of cell samples!V”RaNA' algorithm extends the range of applicability of the

changes induced could interest a great number of signals and'@gmalization procedure to situations typicalinfvivo spec-
the degree of diversity could be greater than 50%. troscopy and that it could be a useful tool in monitoring
The MiRaNAI algorithm does not have these kinds of limmetabolic and biochemical changes in disease processes.
itations and so has a greater range of applicability than theThe MiRaNAI algorithm was also tested by comparing two
MaSNAI algorithm. Monte Carlo simulations showed that theamples of known contents and results were better than tho
MiRaNAI algorithm is consistent and presents very low biagbtained by the traditional method based on the use of
and variance, thus giving an optimal estimation of the normaitandard, while they were comparable with those obtained &
ization factor, also in situations in which the MaSNAI algothe MaSNAI algorithm. Finally, it was demonstrated that the
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FIG. 8. Difference spectrum obtained from the subtraction of A431 control cells from the spectrum of irradiated cells after normalization.

algorithm can be applied to real spectra of cell samples, allow S. Cérdan, R. Parrilla, J. Santoro, and M. Rico, *H NMR detection

ing the extraction of important biological information.
5.
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