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Recently, a new method for quantitatively comparing NMR
spectra of control and treated samples, in order to examine the
possible occurring variations in cell metabolism and/or structure in
response to numerous physical, chemical, and biological agents,
was proposed. This method is based upon the utilization of the
maximum superposition normalization algorithm (MaSNAl) op-
erative in the frequency domain and based upon maximizing, by
an opportune sign variable measure, the spectral region in which
control and treated spectra are superimposed. Although the fre-
quency-domain MaSNAl algorithm was very precise in normaliz-
ing spectra, it showed some limitations in relation to the signal-
to-noise ratio and to the degree of diversity of the two spectra being
analyzed. In particular, it can rarely be applied to spectra with a
small number of visible signals not buried in the noise such as
generally in vivo spectra. In this paper, a time-domain normaliza-
tion algorithm is presented. Specifically, it consists in minimizing
the rank of a Hankel matrix constructed with the difference of the
two free induction decay signals. The algorithm, denoted
MiRaNAl (minimum rank normalization algorithm), was tested
by Monte Carlo simulations as well as experimentally by compar-
ing two samples of known contents both with the new algorithms
and with an older method using a standard. Finally, the algorithm
was applied to real spectra of cell samples showing how it can be
used to obtain qualitative and quantitative biological
information. © 2000 Academic Press

Key Words: NMR; algorithm; normalization; NMR of cells;
ime-domain algorithm.

INTRODUCTION

NMR spectroscopy is increasingly used, bothin vitro andin
vivo, to examine variations induced by physical, chemica
biological agents which have acted on a sample or on a pa
In these types of studies, in order to obtain relative quantit
information, a comparison between signal intensities of co
and treated or exposed samples is often conducted. F
stance, inin vivo studies, signal intensities of a patient sp
trum before and after a therapeutic treatment can be com
to study the effect of the treatment; inin vitro studies, signa
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intensities of control and treated and/or exposed cell sam
can be compared to examine variations in cell metabo
and/or structure.

The problem of precisely comparing signal intensities
treated and control samples is actually a very important
For this purpose, various methods have been developed
example, inin vitro studies, synthetic, such as 3-trimethyl
yl[2,2,3,3-d4]propionate (1, 2), or naturally occurring, such
glucose in 13C spectra (3), reference compounds have b
used. In addition, in bothin vivoandin vitro studies, enzymat
determination of the concentration of a metabolite prese
the samples as well as the assumption that the concentra
a particular metabolite (e.g., the alanine methyl doublet o
creatine singlet) does not change has also been utilized4, 5).
In particular, a common method of normalization of spect
to divide each spectral intensity by either the sum of intens
or the square root of the sum squares of intensities of m
olites whose concentrations are supposed not to chang
these methods are not related directly to the overall intr
properties of the samples, but rather to the addition of ext
substances of known concentration, to the indirect mea
ment of internal substances, or to an assumption abou
concentrations of particular substances.

Recently, a new method for quantitatively comparing
spectra of control and treated samples was proposed (6). It was
first used in order to study adhesion between cells and bi
terials, in particular in order to study the interactions betw
K562 leukemic cells and polylysine (7).

Since concentration differences result in proportional v
tions of spectral intensities, nonproportional changes can
likely be attributed to the effects of a particular agent.
proportional variations are described by a normalization fa
R, which must be calculated in order to compare control
treated signal intensities. For this purpose, the freque
domain maximum superposition normalization algori
(MaSNAl) (6) was proposed. It operates in the freque
domain and takes into consideration all the cell metabo
present in the sample. It consists in maximizing, by an op
tunesign variable measure(8, 9), the spectral region in whic
spectral lines are proportional.
1090-7807/00 $35.00
Copyright © 2000 by Academic Press

All rights of reproduction in any form reserved.



d t
n
n t
tot
o o
ct
-
th

r a

NA
to

on
de
ix
on
tio
al-
uc

,
A
r t
le

as
e

tra
bta

en
ayi

re-
.

ar
e

s
at
s.

If
n f the
H
t n be
o si-
t
v
V

e

g
s
by a

ach
the
l
nk

l
ig.
d
oids,
s are

s
pen-

d the
the
be
lated
lated

e

90 ROMANO, SANTINI, AND INDOVINA
It was shown that the MaSNAl algorithm can be applie
spectra with a high signal-to-noise ratio (SNR. 70) and whe
there are few changes induced by the agent, i.e., whe
spectral lines with changes are few with respect to the
number of spectral lines. In particular, the percent rati
nonsuperimposed points and the total number of spe
points, denoted thedegree of diversityof two spectra, demon
strated that the MaSNAl algorithm was able to calculate
normalization factor with a bias of less than 1% only fo
degree of diversity of less than 50%.

In this paper, a time-domain algorithm, denoted as MiRa
(minimum rank normalization algorithm), which is able
calculate the normalization factorR is presented. It is based
the minimization of the rank, obtained by singular value
composition (SVD) (10–13), of an opportune Hankel matr
(14). The algorithm was tested by Monte Carlo simulati
which demonstrate its ability to determine the normaliza
factor with very low bias, both in spectra with a low sign
to-noise ratio and in cases in which great changes are ind
by the treatment (degree of diversity. 50%). In particular
simulations were conducted for both MaSNAl and MiRaN
algorithms to compare their ranges of applicability. In orde
test the validity of this algorithm experimentally, two samp
of known contents were compared. A traditional method b
on the use of a standard and the new MiRaNAl algorithm w
used.

Finally, the MiRaNAl algorithm was applied to real spec
of cell samples, demonstrating how it can be used to o
qualitative and quantitative biological information.

RESULTS AND DISCUSSION

The Algorithm

A time-domain NMR free induction decay (FID) experim
can be modeled as a sum of complex exponentially dec
sinusoids,

xn 5 O
s51

s5S

Asexp@i ~f0 1 fs!#exp@~2as 1 i2pns!tn# 1 en,

[1]

whereS is the number of sinusoids, andAs, a s, n s, and f s

(s 5 1, 2, . . . , S) are the amplitude, damping factor, f
quency (in Hz), and phase, respectively, of thesth sinusoid
The value off0 is the zero-order phase anden is complex white
Gaussian noise. The number of complex data points isN, n 5
0, 1, . . . ,N 2 1, and the discretely sampled time steps
t n 5 (n 1 h)Dt,with t 0 5 hDt the begin time, or dead tim
of the spectrometer (15, 16). The value off s, required only
under particular experimental conditions, can usually be
equal to zero (16) and, in what follows, it will be supposed th
this is the situation for the present experimental condition
o
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The L 3 M Hankel matrix

X 5 3
x0 x1 · · · xM21

x1 x2 · · · xM·
·
·

·
·
·

·
·
·

·
·
·

xL21 xL · · · xN21

4 , [2]

which consists ofN uniformly sampled data pointsxn, n 5 0,
1, . . . , N 2 1, with L and M chosen greater thanS and
subjected to the constraintN 5 L 1 M 2 1, is considered.

oise is present and if the SNR is not too low, the rank o
ankel matrix in Eq. [2] can be approximated byS, that is, by

he number of harmonic components of the FID, and it ca
btained by SVD (10–13, 17). The singular value decompo

ion theorem states that ifX is an arbitraryL 3 M complex
alued matrix, then there exist unitary matricesU(L 3 L),
(M 3 M) and p ordered real numbers (p 5 min(L, M))

s 1 $ s 2 $ . . . $ s p . 0, such that

X 5 USV†,

whereS(L 3 M) is such thatS 5 diag(s 1, s 2, . . . , s p) and
the † denotes Hermitian conjugation. Thep numbers are th
so-called singular values of theX matrix.

If the X matrix has rank equal toL, only its firstL singular
values are greater than zero; that is, for aL rankX matrix one
has

s1 $ s2 $ . . . $ sL . 0

sL11 5 sL12 5 . . . 5 sp 5 0. [3]

An X Hankel data matrix of a noiseless FID comprisinL
complex decaying sinusoids has rank equal toL, because it
elements are points of the FID and then they are obtained
linear combination ofL independent signal components. E
X Hankel matrix row (column) is a linear combination of
sameL independent signal components and then theX Hanke
matrix can have onlyL independent rows (columns). The ra
of theX Hankel matrix isL. As a consequence, theX Hanke
matrix has onlyL singular values different from zero. In F
1a, the singular values of theX Hankel matrix of a simulate
noiseless FID, containing 10 exponentially decaying sinus
are plotted. As can be seen, only the first 10 singular value
different from zero, while the others are all zero.

If the FID is affected by noise, itsX Hankel matrix become
a full rank matrix because the noise destroys the linear de
dence of the rows (columns): noise can be considere
combination of infinite independent signals. However, if
SNR is not too low, that is, if the signal amplitudes can
considered greater than the noise amplitude, the signal-re
singular values are very much greater than the noise-re
singular values and the rank of theX Hankel matrix still can b
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91TIME-DOMAIN ALGORITHM
approximated byL. In particular, in the ordered singular valu
there will be a discontinuity between signal-related and n
related singular values. In Fig. 1b the singular values of tX
Hankel matrix of the above-simulated FID containing 10
ponentially decaying sinusoids, with the addition of Gaus
noise (SNR5 108), are plotted. As can be seen, all sing
alues are not exactly zero, but at the 10th singular value
s a discontinuity. The rank of the Hankel matrix can
pproximated by 10.
At this point, two FIDsX1(t) andX2(t) will be considere

relative, respectively, to a control sample and to a treated
It will be supposed that the treatment does not affect s
unknown signals, which are proportional due to changes
in concentration. These proportional variations are desc
by the normalization factorR, and the two FIDs can be writte

xn1 5 exp~if01!@O
s51

s5P

Ps1exp@~2as1 1 i2pns!tn#

1 O
s5P11

s5S1

As1exp@~2bs1 1 i2pns1!tn1## 1 en1 [4]

FIG. 1. Plot of the singular values of a simulated FID containing
exponentially decaying sinusoids: (a) noiseless FID; (b) SNR5 108.
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and

xn2 5 exp~if02!@O
s51

s5P

Ps2exp@~2as2 1 i2pns!tn#

1 O
s5P11

s5S2

As2exp@~2bs2 1 i2pns2!tn2## 1 en2, [5]

wheren 5 0, 1, . . . ,N 2 1, f 01 is the zero-order phase,en1

is the complex Gaussian noise andt n1 5 (n 1 h 1)Dt, with
t 01 5 h 1Dt the begin time of FID 1;Ps1, a s1, andn s (s 5 1,

, . . . , P) are, respectively, the amplitude, damping fac
nd frequency (in Hz) of thesth proportional sinusoid of FI
; andAs1, b s1, andn s1 (s 5 P 1 1, P 1 2, . . . , S1) are

respectively, the amplitude, damping factor, and frequenc
Hz) of thesth nonproportional sinusoid of FID 1. The symb
f 02, en2, t n2 5 (n 1 h 2)Dt, t 02 5 h 2Dt, Ps2, a s2, n s, As2, b s2,

ndn s2 have the same meaning for FID 2. In this hypothe
Ps1 5 R p Ps2, anda s1 5 a s2 for s 5 1, 2, . . . ,P, while, in
general and due to the effects of the treatment, fors . P,
As1 Þ R p As2 andb s1, b s2, n s1, andn s2 could be different.

If one assumes thath1 . h2 . 0 (18), from Eqs. [4] and [5
it follows that the zero-order phasesf01 and f02 of the two
FIDs can be approximated by the phases of their first poinx01

and x02, respectively; in particular,f 01 . arctan(x01) and
f 02 . arctan(x02). To correct the FIDs in their zero-ord
phase, it is then sufficient to multiply each point of the FIDs
exp2if01 . exp2i arctan(x01) and exp2if02 . exp2i arctan(x02), respec-
tively; the FIDs, corrected in their zero-order phase, can
be described as

x̂n1 5 exp@2i arctan~ x01!# p xn1 [6]

x̂n2 5 exp@2i arctan~ x02!# p xn2, [7]

wheren 5 0, 1, . . . , N 2 1.
Denoted by

dx̂n 5 x̂n1 2 K p x̂n2, [8]

where K is a test value of the normalization factorR, the
Hankel matrix

DX~K! 5 3
dx̂0 dx̂1 · · · dx̂M21

dx̂1 dx̂2 · · · dx̂M·
·
·

·
·
·

·
·
·

·
·
·

dx̂L21 dx̂L · · · dx̂N21

4 [9]

ith L andM chosen greater thanS1 1 S2 and subjected to th
constraintN 5 L 1 M 2 1, will be considered. ForK Þ R,
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92 ROMANO, SANTINI, AND INDOVINA
these matrices will have a rank approximated at the mo
S1 1 S2 2 P, because inDX(K) there will be a number o
independent complex decaying sinusoids equal at the m
the sum of the number ofX1 andX2 complex decaying sinu-
soids minusP, being the proportionalP decaying sinusoid
counted twice inS1 1 S2. However, forK 5 R andh1 ' h2,
the rank ofDX(R) will be approximated at the most byS1 1
S2 2 2 p P, because theP proportional complex decayin
inusoids inX1 andX2 cancel each other out.
In order to obtain the normalization factorR, the algorithm

which operates in the time domain, consists in calculating
minimum rank of the Hankel matrix in Eq. [9]. If the sign
to-noise ratio is not too low, this calculation can be acc
plished by the singular value decomposition looking a
eventually occurring discontinuity in the ordered singular
ues of the Hankel matrix in Eq. [9]. In fact, due to noise,
singular values of the matrix in Eq. [9] will be all differe
from zero, but singular values related to noise will be v
much smaller than those related to signals. In this mann
the ordered singular values there will be a discontinuity
tween signal- and noise-related singular values. The rank
matrix in Eq. [9] will be approximated by the number
singular values related to signals and whenK 5 R, this
number will be minimum.

Simulations Testing the Algorithm

In order to test the MiRaNAl algorithm, both simulated F
and experimental1H NMR FIDs of known contents we
utilized. The simulated FIDs were generated by complex
perposition of exponential decaying sinusoids with add

TAB
FID 1 and FI

Amplitude 1 Amplitude 2 Damping 1

17. 34. 369.
10. 20. 327.
36. 72. 913.
15. 30. 651.
20. 40. 236.
12. 24. 950.
25. 50. 139.
33. 66. 210.
35. 70. 178.
15. 30. 555.
23. 46. 710.
22. 44. 345.
35. 70. 455.
27. 54. 825.
40. 50. 177.
20. 10. 123.
15. 40. 275.
39. 58. 700.
35. 15. 765.
14. 50. 455.
by

to
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Gaussian noise. Each point of these Monte Carlo simula
consisted in 30 independent Gaussian noise realizatio
couples of FIDs. The program was written in Matlab an
order to generate random numbers, therandnMatlab function
was used. Each FID consisted of 20 complex decaying
soids with a number of sinusoid amplitudes in a ratio of
The range of amplitudes, in arbitrary units, went from 0 to
(the range presented is relative to the FIDs with smaller
plitudes, so that the same range has to be duplicated fo
amplitudes of FIDs with greater amplitudes). The linew
range was 30–300 Hz. The number of nonproportional c
plex decaying sinusoids, that is, of those sinusoids ha
amplitude ratios different from 1:2, was varied from 4 to
always with 20 as the total number of sinusoids per FID.

SinceR 5 2, the minimization in the MiRaNAl algorithm
was carried out in the simplest way, that is, by makingK vary
from 1.6 to 2.4 with a step of 0.01 and calculating the m
mum rank of the Hankel matrix in Eq. [9]. The estimate oR
was theK value for which the minimum rank was attained

Four different sets of Monte Carlo simulations were car
out.

Discontinuity in the ordered singular values.The first sim
ulation was designed to show how, when noise is not
there is a discontinuity in the ordered singular values o
Hankel matrix in Eq. [9] and how the minimum rank, and t
the normalization factorR, is obtained by looking at th
discontinuity. Two FIDs, with the parameter values in Tab
andN 5 256,Dt 5 0.000125s,d1 5 0.00030,d2 5 0.00035
f01 5 0.54 rad, f02 5 0.35 rad, and SNR5 191, were
considered. As can be seen in this table, the two FIDs ha

1
2 Parameters

Damping 2 Frequency 1 Frequency 2

369. 23500. 23500.
327. 23450. 23450.
913. 23150. 23150.
651. 23000. 23000.
236. 22900. 22900.
950. 22750. 22750.
139. 22000. 22000.
210. 21500. 21500.
178. 1600. 1600.
555. 1800. 1800.
710. 2100. 2100.
345. 2700. 2700.
455. 2850. 2850.
825. 3020. 3020.
177. 23335. 23335.
123. 23100. 23100.
275. 2400. 2400.
700. 3000. 3000.
865. 3100. 2900.
555. 3500. 3400.
LE
D
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93TIME-DOMAIN ALGORITHM
complex proportional decaying sinusoids in a ratio of 1:2,
is, the two FIDs have a normalization factor ofR 5 2, while
the other four have nonproportional amplitudes, and the
two have different dampings and different frequencies. W
correctly normalized, there will be 6 independent com
decaying sinusoids and so the rank of the Hankel matrix in
[9], for K 5 R 5 2, has to be approximated by 6. In Fig.

re reported the first 25 ordered singular values of the Ha
atrix in Eq. [9] obtained withL 5 80 andK 5 1.8, 1.9, 2.0
.1, 2.2. As can beseen, in the range of the first 5–10 singu
alues there is a discontinuity for all fiveK values. Figure 2
s a zoom of Fig. 2a in order to better show the region
nterest. As this figure shows, forK 5 R 5 2.0 there is
iscontinuity around the 6th singular value, while forK Þ 2.0,

he discontinuity appears after the 10th singular value. F
he figure, it can be assumed that the minimum approxim
ank of the Hankel matrix for the two FIDs considered
pproximately 6 and occurs forK 5 R 5 2.0.

Dependence on the degree of diversity.In these and in th
ollowing Monte Carlo simulations, in order to obtain the ind
f the singular value which separates signal-related from n

FIG. 2. Ordered singular values of a Hankel matrix obtained by two F
for different K values versus their index: (a) the first 25 ordered sing
values; (b) the zoom in the first 20 ordered singular values in the range
t

st
n
x
q.

el

r

f

m
ed

e-

elated singular values, an automatic procedure was us
articular, ifs p2p/411, s p2p/412, . . . , s p was the last quarter

singular values, certainly all noise related, denoted by

t 5 maxi$~sp2i 2 sp2i11!%,

i 5 p/4 2 1, p/4 2 2, . . . , 1,

he index required was the lastj , with j 5 1, 2, . . . ,p 2 1,
or which the condition (s j 2 s j11) $ 1.5 p t was satisfied

The second set of Monte Carlo simulations was design
study the dependence of the algorithm on the degree of d
sity. If two FIDs have all the complex decaying sinusoids
are proportional by a constant factorR, then the two spectr
obtained by Fourier transforming the FIDs, can be supe
posed simply by multiplying one of them byR. Normalizing
the two spectra, in this case, is very easy: it is sufficient, in
to look at the constant factor which makes them superimp
When the two FIDs have only some complex decaying s
soids which are proportional by a constantR, the two spectr
result superimposed only in some regions, but not totally, w
correctly normalized. The degree of diversity of two spect
defined as the percent ratio between the number of point
are not superimposed and the total number of spectral p
when the two spectra are correctly normalized. On the o
hand, when the degree of diversity is small (less than 5
normalizing a couple of spectra in the frequency doma
easy because, in that case, they result superimposed
majority of spectral points (6). However, the degree of dive
sity depends on the number of complex decaying sinu
which are not proportional and on the characteristics of c
plex decaying sinusoids. Therefore, two spectra can ha
great number of proportional complex decaying sinusoids
at the same time a great degree of diversity. However, in
case, in the frequency domain, it is not possible to deter
the normalization constant. On the other hand, the MiRa
algorithm, which operates in the time domain, should
depend on the degree of diversity since it is not based o
superposition of spectral points.

The results of the MaSNAl algorithm in the frequen
domain and those of the MiRaNAl algorithm were compa
Before applying the MaSNAl algorithm the FIDs were ze
filled to 32,768 points and then Fourier transformed.
parameters used to quantitatively compare the behavior o
two above-mentioned algorithms were the absolute pe
bias (bias) and the variance (var) defined by the follow
equations, respectively (19),

bias~K! 5 uE@K# 2 Ru/R p 100

var~K! 5 E@~K 2 E@K#! 2#,

whereE[ ] denotes the mean operation.
In Fig. 3a, the absolute percent bias is reported as a fun

s
r
0.
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94 ROMANO, SANTINI, AND INDOVINA
of the degree of diversity for simulated spectra having a sig
to-noise ratio of 1106 4. As this figure shows, the tim

omain MiRaNAl algorithm is, as expected, quite indepen
f the degree of diversity. Therefore, it is better than

requency-domain MaSNAl algorithm which cannot be app
or a degree of diversity greater than 50%. Furthermore
bsolute percent bias is reported as a function of the deg
iversity for simulated spectra having a signal-to-noise rat
3 6 4 (Fig. 3b). This figure confirms that the time-dom

MiRaNAl algorithm is quite independent of the degree
diversity for noisier spectra as well and again that it is b
than the frequency-domain MaSNAl algorithm which does
work well for degree of diversity. 50%. In particular, th
MiRaNAl algorithm also has a percent bias of less than 1%
degree of diversity. 50%, when the MaSNAl algorithm giv
very biased results.

In conclusion, Figs. 3a and 3b show that the MiRa
algorithm is quite independent of the degree of diversity o
spectra and therefore can also be applied in situations in w
there are proportional complex decaying sinusoids with a

FIG. 3. Percent absolute bias versus degree of diversity:F, MiRaNAl
algorithm;Œ, MaSNAl algorithm: (a) mean SNR5 110 6 4; (b) mean SNR
5 53 6 4.
l-
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gree of diversity greater than 50%. The MiRaNAl algorithm
also applicable in situations in which it is not possible to ob
the normalization constant in the frequency domain.

In Figs. 4a and 4b the variance is reported as a functio
the degree of diversity. In particular, in these figures, it ca
observed that the variance is quite independent of the deg
diversity of the spectra and that there are no significant d
ences in the dispersion of the MaSNAl and MiRaNAl al
rithms’ estimated values around the true parameter value

Dependence on the signal-to-noise ratio.The third set o
Monte Carlo simulations was designed to examine the de
dence of the algorithm on the spectral noise. The signa
noise ratio was defined by

SNR5
c~n0! 2 c#

2 3 F¥ i5a1
a2

~c~n i! 2 c# ! 2

N G 1/ 2 , [10]

wherec# [ [¥ i5a1
a2 c(n i)]/(N 1 1), c(n0) is the maximum pea

FIG. 4. Variance versus degree of diversity:F, MiRaNAl algorithm;Œ,
MaSNAl algorithm: (a) mean SNR5 110 6 4; (b) mean SNR5 53 6 4.
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95TIME-DOMAIN ALGORITHM
height,a1 anda2 are the limits of the noise region withN 1
1 5 a1 2 a2, andc# is the DC level of the noise region. In F
5a, the absolute percent bias is reported as a function o
SNR for simulated spectra having a degree of diversity of 46
3%. This figure shows that the MiRaNAl algorithm is qu
robust since it has a bias of less than 1% for spectra with a
signal-to-noise ratio (SNR, 18) as well. Furthermore, th
MiRaNAl algorithm proved to be more robust than
MaSNAl algorithm which for SNR, 50 is more biased. I
Fig. 5b, the absolute percent bias is reported as a functi
the SNR for simulated spectra having a degree of diversi
59 6 3%. This figure confirms that the MiRaNAl algorithm
very robust (bias less than 1%) and, above all, that it is
applicable in situations in which the MaSNAl frequency-
main algorithm does not work well (degree of diversity.
50%).

Dependence of R values.The last set of Monte Car
simulations was designed to test the MiRaNAl algorithm
different values of the normalization factor. In particular, e

FIG. 5. Percent absolute bias versus SNR:F, MiRaNAl algorithm; Œ,
MaSNAl algorithm: (a) mean degree of diversity5 416 3%; (b) mean degre
of diversity 5 59 6 3%.
he

w

of
of

o
-

r
h

point of this simulation regards simulations with different t
R normalization factor values (Fig. 6). In this figure,
estimated value of the normalization factor is reported as a
R value function. As can be seen, there is an optimal cor
tion between estimated and true values.

From the results presented above, the Monte Carlo sim
tions demonstrate that, for signal-to-noise ratios greater
40, the MiRaNAl algorithm is able to determine the norm
ization factorR of two NMR spectra with a bias of 1% at mo

Quantitative Relationship between Two Spectra Obtained
by the MiRaNAl and MaSNAl Algorithms and
a More Traditional Added Standard Method

In order to test the validity of the MiRaNAl algorith
experimentally, two samples of known contents were c
pared. Both samples contained thyrotropin releasing f
(THR, Calbiochem, MW 362.4), deuterated methanol (CD3OD
99.96%, Cambridge Isotope Laboratories), and sodium
methylsilyl[2,2,3,3-d4]propionate (TSP, 10mmol/ml). The firs
sample (sample A) consisted of 4.5 mg of THR, 400ml of
CD3OD, and 10ml of TSP, while the second sample (sam
B) consisted of 4.5 mg of THR, 600ml of CD3OD, and 10ml
of TSP.

Five 1H NMR spectra were obtained, for each sample, u
a Bruker DPX digital spectrometer operating at 300 MHz.
spectra were accumulated with a 90° flip angle pulse an
transients of 8K data points corresponding to a spectral
dow of 62097.3 Hz.

Using the traditional method, that is, making a quantita

FIG. 6. EstimatedR values versus trueR values. Couples of FIDs wi
NR 5 203 6 14. Curve fit:y 5 ax 1 b with a 5 1.006,b 5 20.002.
orrelation ratior 5 1.0.
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96 ROMANO, SANTINI, AND INDOVINA
analysis using the TSP standard, the following results
obtained (6):

Sample THR CD3OD residual pea

A 38.7 6 3.6 mmol/ml 41.9 6 3.9 mmol/ml
B 20.2 6 2.5 mmol/ml 36.1 6 4.6 mmol/ml

[11]

If the percent difference (DCD3OD(%)) of CD3OD relative to
THR of the sample A spectrum with respect to the samp
spectrum is to be computed, the following equation ca
used,

DCD3OD~%! 5

CD3OD~A! 2
CD3OD~B!

THR~B!
THR~A!

CD3OD~B!

THR~B!
THR~A!

3 100,

[12]

here CD3OD(A) is the CD3OD concentration in spectrum
and the other symbols have similar meanings.

The CD3OD concentrations are proportional to those-
ained by considering the CD3OD residual peaks due to res-
ual protons (20); thus, the concentrations obtained by
CD3OD residual peaks in Eq. [11] can be used directly in
[12]. With this equation, using the concentrations obtaine
the TSP standard quantification (traditional method
DCD3OD(%) 5 (239.46 8.7)% percent difference was obtain
(6), while, from the known quantities of the added substa
and using the same above-cited equation, aDCD3OD(%) 5
233.46 0.2)% difference was expected.

The same two spectra (A, B) were utilized to obtain
ercent differenceDCD3OD(%) of CD3OD relative to THR by

using the MaSNAl and MiRaNAl algorithms. The spectra w
normalized with the algorithms. At this point, the perc
differenceDCD3OD(%) of CD3OD relative to THR between th
pectrum of sample A, normalized with respect to the spec
f sample B, was obtained directly by comparing the are

he two spectral CD3OD residual peaks. The value found w
the MaSNAl algorithm wasDCD3OD(%) 5 (234.26 1.3)% (6),
while that found with the MiRaNAl algorithm wa
DCD3OD(%) 5 (232.56 1.6)%.

As can be seen, all three methods yielded percent diffe
results which were consistent with the expected ones. H
ever, the MiRaNAl and MaSNAl algorithms allowed go
results to be obtained without the use of any standard
without quantifying all the spectral lines, but rather by co
paring the signals of interest in the normalized spectra.

Biological Application

The MiRaNAl algorithm was applied to the normalization
NMR spectra of cell samples. In particular, the1H NMR
re

B
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.
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a
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e

e
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m
of

ce
w-

nd
-

spectra of control A431 cells (an epidermoid carcinoma) an
these cells exposed to a sublethal dose of 3 Gy of ion
radiation (Gammacell 220, Atomic Energy of Canada L
were compared.

The two FIDs, acquired under the same experimental
ditions using a Bruker DRX-5.00 spectrometer operatin
500 MHz, were analyzed by the MiRaNAl algorithm an
normalization factor ofR 5 1.33 wasfound. After normal
zation, the two normalized FIDs were Fourier transformed
ig. 7 are reported the resulting two spectra. As can be

he spectra, after the normalization, overlap in a signifi
umber of spectral lines.
In Fig. 8, the difference spectrum obtained from subtrac

f the spectrum of controls from that of irradiated cells, a
ormalization, is reported. As can be seen, the majority o
ignals fall around the baseline which appears very fla
ddition, an immediate identification of the spectral com
ents which vary between the two spectra and which
robably the result of the 3 Gy irradiation can be obtaine
articular, important changes are induced in glycerophosp
ylcholine (GPC, 3.24 ppm), phosphatidylcholine (PC, 3.
holine (Cho, 3.21 ppm), creatine (Cr, 3.03 ppm), and la
Lac, 1.33 ppm) and in the lipid region (1.6–0.6 ppm).

The difference spectrum in Fig. 8 shows that there
lterations in creatine (irradiated cells contain a greater am
f Cr) and in lactate (irradiated cells contain a much sm
mount of Lac with respect to control cells) which indica
erturbation of the energy metabolism of the cells. Furt
ore, alterations in phosphatidylcholine (irradiated cells

ain a much smaller amount of PC) and in lipid (irradiated c
ontain a greater amount of CH2 and CH3 lipids than contro

cells) reveal changes in cell membrane structure.
Thus, from these data, it appears that the MiRaNAl a

rithm presented can be adequately utilized to compare N
spectra of tumor cells.

CONCLUSIONS

In this paper, a time-domain algorithm for the normaliza
of couples of NMR spectra, in order to compare these sp
and to obtain relative quantitative information without the n
of any standards, is presented. It consists in minimizing
rank of the FID difference Hankel matrix and obtaining
normalization constant which is able to reduce the numb
linear independent complex decaying sinusoids in the d
ence of the two FIDs.

Recently an algorithm for NMR spectra normalization
presented (6); it was the MaSNAl algorithm operative in t
frequency domain. Both the MaSNAl and MiRaNAl alg
rithms allow normalization by exploiting intrinsic sample pr
erties and thus considerably simplify the measurement p
dures. In fact, no addition of substances or partic
manipulations of the samples are needed, thus reducing
tamination risks. In addition, the algorithms are very eas
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97TIME-DOMAIN ALGORITHM
manage and the normalization procedures require only a
minutes. However, MiRaNAl shows some advantages
respect to the MaSNAl algorithm.

First, MiRaNAl operates in the time domain and so does
require FID manipulations (e.g., phase adjustment, bas
correction) reducing, in this manner, the effect of these ma
manipulations on the calculation of the normalization facto
fact, simulations show that the MiRaNAl algorithm is l
biased than MaSNAl algorithm.

Furthermore, the MaSNAl algorithm was applicable o
when the spectra to be compared had a great numb
proportional signals with respect to the total number of sig
that is, when the degree of diversity of the two spectra was
than 50%. This condition is often verified with spectra crow
with signals and when variations, due to the action of an a
are not so great. In particular, these conditions are often
fied with 1H high-resolution NMR spectra of cell samples,
in in vivospectra this is seldom the situation (21). Furthermore
n crowded1H high-resolution NMR spectra of cell sampl
changes induced could interest a great number of signals a
the degree of diversity could be greater than 50%.

The MiRaNAl algorithm does not have these kinds of l
itations and so has a greater range of applicability than
MaSNAl algorithm. Monte Carlo simulations showed that
MiRaNAl algorithm is consistent and presents very low
and variance, thus giving an optimal estimation of the nor
ization factor, also in situations in which the MaSNAl al

FIG. 7. Superimposed normalized spectra of A
w
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rithm was not applicable. In particular, the MiRaNAl algorit
could be applied toin vivo spectra which are not so crowd

nd for which the MaSNAl algorithm is not suitable.
In fact, it is an important task in magnetic resonance s

roscopy to monitor metabolic and biochemical change
umerous disease processes. However, inin vivo proton spec

roscopy at 1.5 T, the number of proton metabolites that ca
bserved is very limited and the spectra are not so cro
21). As Monte Carlo simulations demonstrated, the MiRa
lgorithm is able to correctly normalize spectra with very
ignals and, above all, spectra with a few proportional sig
hat is, with a degree of diversity greater than 50%. Fur
ore,in vivo spectra have worse signal-to-noise ratios thain

itro spectra and Monte Carlo simulations showed that
iRaNAl algorithm is less sensitive to SNR ratio than
aSNAl algorithm.
In conclusion, Monte Carlo simulations showed that
iRaNAl algorithm extends the range of applicability of
ormalization procedure to situations typical ofin vivo spec

troscopy and that it could be a useful tool in monitor
metabolic and biochemical changes in disease processe

The MiRaNAl algorithm was also tested by comparing
samples of known contents and results were better than
obtained by the traditional method based on the use
standard, while they were comparable with those obtaine
the MaSNAl algorithm. Finally, it was demonstrated that

1 control cells and of A431 cells irradiated with 3 Gy.
43
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98 ROMANO, SANTINI, AND INDOVINA
algorithm can be applied to real spectra of cell samples, a
ing the extraction of important biological information.
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